Design, synthesis, biological evaluation and X-ray structural studies of HIV-1 protease inhibitors containing substituted fused-tetrahydropyranyl tetrahydrofuran as P2-ligands.

نویسندگان

  • Arun K Ghosh
  • Cuthbert D Martyr
  • Luke A Kassekert
  • Prasanth R Nyalapatla
  • Melinda Steffey
  • Johnson Agniswamy
  • Yuan-Fang Wang
  • Irene T Weber
  • Masayuki Amano
  • Hiroaki Mitsuya
چکیده

Design, synthesis, biological and X-ray crystallographic studies of a series of potent HIV-1 protease inhibitors are described. Various polar functionalities have been incorporated on the tetrahydropyranyl-tetrahydrofuran-derived P2 ligand to interact with the backbone atoms in the S2-subsite. The majority of the inhibitors showed very potent enzyme inhibitory and antiviral activity. Two high-resolution X-ray structures of 30b- and 30j-bound HIV-1 protease provide insight into ligand-binding site interactions. In particular, the polar functionalities on the P2-ligand appear to form unique hydrogen bonds with Gly48 amide NH and amide carbonyl groups in the flap region.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-dimensional Uranium(VI) Coordination Polymer Complex Containing Dimethyl and Trimethyl Phosphate Ligands: Synthesis, Spectroscopic Characterization, Thermal Analyses, and Crystal Structure

A new one-dimensional uranium(VI) coordination polymer, [UO2(μ-DMP)2(TMP)]n (1) (DMP is dimethyl phosphate and TMP is trimethyl phosphate), was prepared from the reaction of UO2(NO3)2.6H2O and TMP in in THF (THF is tetrahydrofuran) as a solvent. Suitable crystals of this complex for crystal structure determination were obtained by slow evaporation of the produced yellow solution at room tempera...

متن کامل

THE DESIGN, MODELING AND EVALUATION OF POTENTIAL HIV PROTEASE INHIBITORS USING BLITZ, AN INTERACTIVE COMPUTER GRAPHICS WORKING TOOL

Several nonpeptide small molecules were designed as potential inhibitors of HIV protease and their structures were constructed by computer-aided molecular modeling and docked iwo the active site of HIV protease. Models of the complexes of inhibitors and the HIV protease were refined using nonbonded and H-bonding terms. The refined energy of selected complexes showed that the designed inhib...

متن کامل

Design and synthesis of HIV-1 protease inhibitors incorporating oxazolidinones as P2/P2' ligands in pseudosymmetric dipeptide isosteres.

A series of novel HIV-1 protease inhibitors based on two pseudosymmetric dipeptide isosteres have been synthesized and evaluated. The inhibitors were designed by incorporating N-phenyloxazolidinone-5-carboxamides into the hydroxyethylene and (hydroxyethyl)hydrazine dipeptide isosteres as P2 and P2' ligands. Compounds with (S)-phenyloxazolidinones attached at a position proximal to the central h...

متن کامل

Design, Synthesis, Molecular Modeling Study and Biological Evaluation of New N'-arylidene-pyrido[2,3-d]pyrimidine-5-carbohydrazide Derivatives as Anti-HIV-1 Agents

In an attempt to identify potential new agents that are active against HIV-1, a series of novel pyridopyrimidine-5-carbohydrazide derivatives featuring a substituted benzylidene fragment were designed and synthesized based on the general pharmacophore of HIV-1 integrase inhibitors. The cytotoxicity profiles of these compounds showed no significant toxicity to human cells and they exhibited anti...

متن کامل

Screening Efficacy of Available HIV Protease Inhibitors on COVID-19 Protease

Background and Aim: Advent of COVID-19 attracted the attentions of researchers to develop drugs for its treatment. Besides efforts on developing new drugs, screening available drugs for efficacy on COVID-19 could be an urgent action of initiating its pharmacotherapy. In this study, efficacy of HIV protease inhibitors on COVID-19 protease has been examined. Methods: Molecular docking based scree...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Organic & biomolecular chemistry

دوره 13 48  شماره 

صفحات  -

تاریخ انتشار 2015